Лечение рака по генетическому профилю

Выбор техники

В зависимости от типа опухоли и ее прогрессии, для пациента подбирается наиболее эффективная методика лечения. На сегодняшний день разработаны новые перспективные техники генной терапии против рака, среди которых онколитическая вирусная ГТ, пролекарственная ГТ (prodrug therapy), иммунотерапия, ГТ с использованием стволовых клеток.

Для этой методики используются вирусы, которые с помощью специальных генетических манипуляций становятся онколитическими — перестают размножаться в здоровых клетках и воздействуют только на опухолевые.

Хорошим примером такой терапии является ONYX-015 — модифицированный аденовирус, который не экспрессирует белок Е1В. При отсутствии этого белка вирус не может реплицироваться в клетках с нормальным геном p53 [15 ].

Два вектора, сконструированных на базе вируса простого герпеса (HSV-1) — G207 и NV1020 — также несут в себе мутации нескольких генов, чтобы реплицироваться только в раковых клетках [16 ]. Большим преимуществом техники является то, что при проведении внутривенных инъекций онколитические вирусы разносятся с кровью по всему организму и могут бороться с метастазами.

Основные проблемы, которые возникают при работе с вирусами — это возможный риск возникновения иммунного ответа в организме реципиента, а также неконтролируемое встраивание генетических конструкций в геном здоровых клеток, и, как следствие, возникновение раковой опухоли.

Базируется на введении в опухолевую ткань «суицидных» генов, в результате работы которых раковые клетки погибают. Данные трансгены кодируют ферменты, активирующие внутриклеточные цитостатики, ФНО-рецепторы и другие важные компоненты для активации апоптоза.

Суицидная комбинация генов пролекарства в идеале должна соответствовать следующим требованиям [17 ]: контролируемая экспрессия гена; правильное превращение выбранного пролекарства в активное противораковое средство; полная активация пролекарства без дополнительных эндогенных ферментов.

Минус терапии состоит в том, что в опухолях присутствуют все защитные механизмы, свойственные здоровым клеткам, и они постепенно адаптируются к повреждающим факторам и пролекарству. Процессу адаптации способствует экспрессия цитокинов (аутокринная регуляция), факторов регуляции клеточного цикла (отбор самых стойких раковых клонов), MDR-гена (отвечает за восприимчивость к некоторым медикаментам).

Иммунотерапия

Лечение рака по генетическому профилю

Благодаря генной терапии, в последнее время начала активно развиваться иммунотерапия — новый подход для лечения рака с помощью противоопухолевых вакцин. Основная стратегия метода — активная иммунизация организма против раковых антигенов (ТАА) с помощью технологии переноса генов [?18].

Главным отличием рекомбинантных вакцин от других препаратов является то, что они помогают иммунной системе пациента распознавать раковые клетки и уничтожать их. На первом этапе раковые клетки получают из организма реципиента (аутологичные клетки) или из специальных клеточных линий (аллогенные клетки), а затем выращивают их в пробирке.

Для того чтобы эти клетки могли узнаваться иммунной системой, вводят один или несколько генов, которые производят иммуностимулирующие молекулы (цитокины) или белки с повышенным количеством антигенов.

Широкое разнообразие вирусных и невирусных векторов для трансгенов позволяет экспериментировать над различными типами иммунных клеток (например, цитотоксическими Т-клетками и дендритными клетками) для ингибирования иммунного ответа и регрессии раковых клеток.

В 1990-х годах было высказано предположение, что опухолевые инфильтрирующие лимфоциты (TIL) являются источником цитотоксических Т-лимфоцитов (CTL) и естественных киллеров (NK) для раковых клеток [19 ].

Так как TIL можно легко манипулировать ех vivo. они стали первыми генетически модифицированными иммунными клетками, которые были применены для противораковой иммунотерапии [20 ]. В Т-клетках, изъятых из крови онкобольного, изменяют гены, которые отвечают за экспрессию рецепторов для раковых антигенов.

Также можно добавлять гены для большей выживаемости и эффективного проникновения модифицированных Т-клеток в опухоль. С помощью таких манипуляций создаются высокоактивные «убийцы» раковых клеток [21 ].

Когда было доказано, что большинство видов рака имеют специфические антигены и способны индуцировать свои защитные механизмы [22 ], была выдвинута гипотеза, что блокировка иммунной системы раковых клеток облегчит отторжение опухоли.

Поэтому для производства большинства противоопухолевых вакцин в качестве источника антигенов используют опухолевые клетки пациента или специальные аллогенные клетки. Основные проблемы иммунотерапии опухолей — вероятность возникновения аутоиммунных реакций в организме больного, отсутствие противоопухолевого ответа, иммуностимуляция роста опухоли и другие.

Стволовые клетки

Мощным инструментом генной терапии является использование стволовых клеток в качестве векторов для передачи терапевтических агентов — иммуностимулирующих цитокинов, «суицидных» генов, наночастиц и антиангиогенных белков [23 ].

ПОДРОБНЕЕ ПРО:  Народное лечение рак легких симптомы и

Стволовые клетки (СК), кроме способности к самообновлению и дифференцировке, имеют огромное преимущество по сравнению с другими транспортными системами (нанополимерами, вирусами): активация пролекарства происходит непосредственно в опухолевых тканях, что позволяет избежать системной токсичности (экспрессия трансгенов способствует разрушению только раковых клеток).

Дополнительным позитивным качеством является «привилегированное» состояние аутологичных СК — использованные собственных клеток гарантирует 100%-совместимость и повышает уровень безопасности процедуры [24 ].

Лечение рака по генетическому профилю

Но все же эффективность терапии зависит от правильной ех vivo передачи модифицированного гена в СК и последующего переноса трансдуцированных клеток в организм пациента. Кроме того, прежде чем применять терапию в широких масштабах, нужно детально изучить все возможные пути трансформации СК в раковые клетки и разработать меры безопасности для предупреждения канцерогенного преобразования СК.

Генная терапия как перспектива

Подобные разработки ведутся и в России, но не так активно, как за рубежом. «Есть даже закон о клеточных технологиях, который потенциально позволяет такие технологии регистрировать и применять в медицине», — рассказывает Ильинский.

По его прогнозам, аналогичные подходы появятся в России в ближайшие пару лет. В то же время собеседник Forbes отмечает, что интерес фармацевтических компаний сводится в возможности продавать те или иные продукты и услуги.

«В США (где население почти в два раза больше, чем в России) многие страховые компании готовы оплачивать такие дорогие решения, чего нельзя сказать о России. Экономические соображения играют в этом заметную роль, хотя почти никогда и не обсуждаются публично», — заключает он.

Милейко соглашается с коллегой, что подобные проекты в России есть: этим направлением на уровне стартапов у нас занимаются несколько команд. При этом инвестиции в такие проекты в десятки раз ниже успешных компаний за рубежом, говорит он.

Российские стартапы в этой области, по словам руководителя онкологического направления биомедицинского холдинга «Атлас», привлекают десятки миллионов рублей, когда международные стартапы «поднимают сегодня сотни миллионов долларов».

«Все они, как правило, находятся на базе нескольких крупных НИИ, так как для осуществления их деятельности требуется очень дорогая инфраструктура (лаборатории, чистые клеточные производства). Один из таких проектов базируется на НИИ детской онкологии, гематологии и трансплантологии им. Р. М.

Горбачевой СПбГМУ им. акад. И. П. Павлова и уже получил поддержку «Сколково». Но в целом перспективы такой дорогостоящей технологии именно в российском здравоохранении весьма туманны. Поэтому скорее всего их решения ориентированы на международные рынки», — признает собеседник Forbes.

Ильинский замечает, что ученым вряд ли когда-либо удастся создать совершенный препарат для лечения рака, поскольку он включает огромное множество разных заболеваний различной природы. Эффективность терапии также сильно зависит от индивидуальных особенностей пациента.

В то же время, по словам основателя Genotek, ситуация меняется по мере изучения этого заболевания. «Если приводить исторические аналогии, то в прошлом веке почти 100 млн человек умерли от обычного гриппа, а сегодня это уже гораздо менее страшное заболевание, потому что профилактика и терапия достаточно совершенны, чтобы не доводить до смертельного исхода.

Но и смертельные случаи редко, да случаются. Такое же развитие можно ожидать и с раком — лет 50 назад эффективной терапии от рака не существовало, сейчас некоторые вида рака можно эффективно профилактировать и лечить, а лет через 50 ученые создадут еще десятки технологий, которые в сумме с имеющимися помогут достичь смертности от рака на уровне смертности от гриппа», — надеется ученый.

На базе научно-исследовательских институтов г.Москвы стремительно растет интерес к этому виду терапии, как наиболее эффективному и безопасному. Методика позволяет оперировать с онкоклетками как внутри организма (in vivo), так и вне его (ex vivo).

Генная терапия in vivo предполагает введение генов в пораженные клетки. Терапия ex vivo предполагает выделение клеток из костного мозга пациента с последующим введением в них здорового гена, в результате полученный материал вводится в опухолевую ткань или в клетки иммунной системы. Этот процесс осуществляют специальные векторы, которые были созданы при помощи генной инженерии.

ПОДРОБНЕЕ ПРО:  Мазь при артрозе голеностопного сустава

Лечение рака по генетическому профилю

По данным PubMed, интерес к генной терапии (ГТ) раковых заболеваний стремительно растет, и на сегодняшний день ГТ объединяет ряд методик, которые оперируют с раковыми клетками и в организме (in vivo ) и вне его (ех vivo ) (рис. 3).

Рисунок 3. Две основные стратегии генной терапии. Еx vivo — генетический материал с помощью векторов переносится в клетки, выращиваемые в культуре (трансдукция), а затем трансгенные клетки вводят реципиенту; in vivo — введение вектора с нужным геном в определенную ткань или орган. Картинка из [8 ].

Генная терапии іn vivo подразумевает перенос генов — введение генетических конструкций в раковые клетки или в ткани, которые окружают опухоль [9 ]. Генная терапия ех vivo состоит из выделения раковых клеток из пациента, встраивания терапевтического «здорового» гена в раковый геном и введения трансдуцированных клеток обратно в организм пациента.

Для таких целей используются специальные векторы, созданные методами генной инженерии. Как правило, это вирусы, которые выявляют и уничтожают раковые клетки, при этом оставаясь безвредными для здоровых тканей организма, или невирусные векторы.

Вирусные векторы

В качестве вирусных векторов используют ретровирусы, аденовирусы, аденоассоциированные вирусы, лентивирусы, вирусы герпеса и другие. Эти вирусы отличаются по эффективности трансдукции, по взаимодействию с клетками (распознавание и заражение) и ДНК.

Главным критерием является безопасность и отсутствие риска неконтролируемого распространения вирусной ДНК: если гены вставляются в неправильном месте генома человека, они могут создать вредные мутации и инициировать развитие опухоли.

Таблица 1. Вирусные векторы [10].
Вектор Краткое описание
Вирус кори (measles virus) содержит отрицательную последовательность РНК, которая не вызывает защитного ответа в раковых клетках
Вирус простого герпеса (HSV-1) может переносить длинные последовательности трансгенов
Лентивирус производный от ВИЧ, может интегрировать гены в неделящиеся клетки
Ретровирус (RCR) не способный к самостоятельной репликации, обеспечивает эффективное встраивание чужеродной ДНК в геном и постоянство генетических изменений
Обезьяний пенистый вирус (SFV) новый РНК-вектор, который передает трансген в опухоль и стимулирует его экспрессию
Рекомбинантный аденовирус (rAdv) обеспечивает эффективную трансфекцию, но возможна сильная иммунная реакция
Рекомбинантный аденоассоциированный вирус (rAAV) способен к трансфекции многих типов клеток

Невирусные векторы

Для переноса трансгенных ДНК также применяют невирусные векторы. Полимерные переносчики лекарственных средств — конструкции из наночастиц — используются для доставки препаратов с низкой молекулярной массой, например, олигонуклеотидов, пептидов, миРНК.

Благодаря небольшим размерам, наночастицы поглощаются клетками и могут проникать в капилляры, что очень удобно для доставки «лечебных» молекул в самые труднодоступные места в организме. Данная техника часто используется для ингибирования ангиогенеза опухоли.

Но существует риск накопления частиц в других органах, например, костном мозге, что может привести к непредсказуемым последствиям [11 ]. Самыми популярными невирусными методами доставки ДНК являются липосомы и электропорация.

Синтетические катионные липосомы в настоящее время признаны перспективным способом доставки функциональных генов. Положительный заряд на поверхности частиц обеспечивает слияние с отрицательно заряженными клеточными мембранами.

могут вмещать генетические конструкции практически неограниченных размеров, отсутствует риск репликации или рекомбинации, практически не вызывает иммунного ответа в организме хозяина. Недостаток этой системы состоит в низкой продолжительности терапевтического эффекта, а при повторном введении могут появляться побочные эффекты [12 ].

Электропорация является популярным методом невирусной доставки ДНК, довольно простым и не вызывающим иммунного ответа. С помощью индуцированных электрических импульсов на поверхности клеток образуются поры, и плазмидные ДНК легко проникают во внутриклеточное пространство [13 ].

Генная терапия іn vivo с использованием электропорации доказала свою эффективность в ряде экспериментов на мышиных опухолях. При этом можно переносить любые гены, например, гены цитокинов (IL-12 ) и цитотоксические гены (TRAIL ), что способствует развитию широкого спектра терапевтических стратегий.

Как взаимодействуют гены и вирусы

Перенос генетического материала из одной клетки в другую проводится с помощью вирусов. В большинстве случаев применяют распространенные типы носителей – вирусы кори, оспы, так как они имеют свойство доставлять внутрь ткани генетический материал.

Эти вирусы модифицируют, для того чтобы они не заразили пациента. Все негативные последствия направлены на больные клетки, без воздействия на здоровые.Важным фактором применения данной методики является ее безопасность и отсутствие рисков бесконтрольного распространения пораженной вирусом ДНК.

Мутации: погибнуть или жить вечно?

Многочисленные генетические исследования выявили, что возникновение раковых клеток — это результат генетических изменений. Ошибки в репликации (копировании) и репарации (исправлении ошибок) ДНК приводят к изменению генов, в том числе и контролирующих деление клетки.

ПОДРОБНЕЕ ПРО:  Соя в лечении рака молочной железы

Основными факторами, которые способствуют повреждению генома, а в дальнейшем — приобретению мутаций, — являются эндогенные (атака свободных радикалов, образующихся в процессе обмена веществ, химическая нестабильность некоторых оснований ДНК) и экзогенные (ионизирующее и УФ-излучение, химические канцерогены).

Когда мутации закрепляются в геноме, они способствуют трансформации нормальных клеток в раковые. Такие мутации в основном случаются в протоонкогенах, которые в норме стимулируют деление клетки. В результате может получиться постоянно «включенный» ген, и митоз (деление) не прекращается, что, фактически, означает злокачественное перерождение.

Традиционные методы и их недостатки

Если системы защиты организма не справились, и опухоль все-таки начала развиваться, спасти может только вмешательство медиков. На протяжении длительного периода врачами используются три основные «классические» терапии:

  • хирургическая (полное удаление опухоли). Используется, когда опухоль имеет небольшие размеры и хорошо локализована. Также удаляют часть тканей, которые контактируют со злокачественным новообразованием. Метод не применяется при наличии метастазов;
  • лучевая — облучение опухоли радиоактивными частицами для остановки и предотвращения деления раковых клеток. Здоровые клетки тоже чувствительны к этому излучению и часто погибают;
  • химиотерапия — используются лекарства, тормозящие рост быстро делящихся клеток. Лекарства оказывают негативное воздействие и на нормальные клетки.

Вышеописанные подходы не всегда могут избавить больного от рака. Часто при хирургическом лечении остаются единичные раковые клетки, и опухоль может дать рецидив, а при химиотерапии и лучевой терапии возникают побочные эффекты (снижение иммунитета, анемия, выпадение волос и др.

), которые приводят к серьезным последствиям, а часто и к смерти пациента. Тем не менее, с каждым годом улучшаются традиционные и появляются новые методы лечения, которые могут победить рак, такие как биологическая терапия, гормональная терапия, использование стволовых клеток, трансплантация костного мозга, а также различные поддерживающие терапии.

• Пролекарственная ГТ, которая заключается во введении специальных генов, именуемых «суицидными», в опухолевые ткани. В результате активной деятельности последних онкоклетки неизбежно погибают. Недостатком данной методики является постепенная адаптация раковых клеток к повреждающему их пролекарству.

• Онколитическая вирусная ГТ, базирующаяся на использовании вирусов, которые в результате генетических изменений становятся онколитическими, то есть способными воздействовать на пораженные клетки, но безвредными для здоровых тканей.

Данная методика обладает важным преимуществом перед остальными из-за возможности быстрого распространения онколитических вирусов по всему организму посредством кровеносных сосудов. Это обеспечивает проникновение вирусов как в очаг опухолевого поражения, так и в отдаленные метастазы.

Заключение

Если подвести итоги, можно с уверенностью говорить, что наступает эпоха персонализированной медицины, когда для лечения каждого онкобольного будет подбираться определенная эффективная терапия. Уже разрабатываются индивидуальные программы лечения, которые обеспечивают своевременный и правильный уход и приводят к значительному улучшению состояния пациентов.

Эволюционные подходы для персонализированной онкологии, такие как геномный анализ, производство таргетных препаратов, генная терапия рака и молекулярная диагностика с использованием биомаркеров уже приносят свои плоды [17 ].

Особенно перспективным методом лечения онкозаболеваний является генная терапия. На данный момент активно проводятся клинические испытания, которые часто подтверждают эффективность ГТ в тех случаях, когда стандартное противораковое лечение — хирургия, лучевая терапия и химиотерапия — не помогает.

Развитие инновационных методик ГТ (иммунотерапии, онколитической виротерапии, «суицидной» терапии и др.) сможет решить проблему высокой смертности от рака, и, возможно, в будущем диагноз «рак» не будет звучать приговором.

Эволюционные подходы к разработкам методик лечения рака позволяют утверждать, что уже сегодня на смену традиционным методам лечения приходит персонализированная медицина. В результате для каждого пациента подбирается индивидуальная программа терапии, отличающиеся безопасностью и высокой эффективностью. Одной из таких программ является генная терапия.

Понравилась статья? Поделиться с друзьями: